
Introducción a Git y GitHub

Rodrigo Caballero
Istio Maintainer

Google Cloud



Rodrigo Caballero

Ingeniero de contenidos

Istio Docs WG Maintainer

GitHub: rcaballeromx

Email: grca@google.com



Topics
● Objectives

● What is Open Source?

● What is GitHub?

● Git, Gerrit, Github, and co. 

● GitHub terminology

● Setting up GitHub

● GitHub flow

● GitHub and branches

● Using Git well

Contributing to 
Open Source

3



Objectives

• Improve our understanding of Git

• Improve our collaboration with GitHub

• Reduce the overhead for publication

• Avoid pitfalls when working with GitHub

• Provide solutions for common problems



What is Open Source?

• A culture: Everyone starts as a contributor.

• A community: We help each other.

• A methodology: We collaborate following rules. 

• A set of principles: We want our users to be free.



What is GitHub?

GitHub is a code hosting platform for version control and 
collaboration. 

- GitHub Documentation



What is GitHub?

GitHub is a code hosting platform for version control and 
collaboration. 

- GitHub Documentation



Git, Gerrit, Github, and Co.

Code

Git

GitLab Github
Disambiguation, once and for all:

• Git is the version control system.

• GitHub hosts the repository.

Git is infrastructure software. Github, 
GitLabs, TeamForge, etc. are middleware.



Git terminology

Git Directory
✓ The .git directory that holds all information in the 

repository

✓ Hidden from view

Working directory
✓ The directory in which .git resides

✓ Contains a "snapshot" of the repository

✓ Will be changed constantly eg. when reverting or 
branching

✓ Your changes will be made to this directory

Index
✓ Changes have to be added to the index from the 

working directory in order to be saved into a commit

✓ Could be thought of as a “loading bay” for commits

Commit
✓ A set of changes that have been saved to the 

repository

✓ Can be reverted and even modified to some extent

✓ Identified by a hash of the changes it contains

Tag
✓ A certain commit that has been marked as special for 

some reason

✓ For example used to mark release-ready versions



Git terminology

HEAD
✓ The latest revision of the current 

branch

✓ Can be used to reference older 
revisions with operands
HEAD^^2 == 2 revisions before latest

HEAD~3 == 3 latest revisions

HEAD^^2..HEAD == 2 revisions before the 
latest to the latest

Branch
✓ An alternate line of development

Working copy
✓ The branch you are in now that you 

make your changes in

Master
✓ The default branch of the repository

Origin
✓ Default name for a remote repository 

when cloning an existing repository



GitHub account

• Create your GitHub account using your email address.

• Use your real name when completing your profile.

• Choose your GitHub username wisely.

• Enable 2-factor authentication.



Setting up GitHub

Adequate use of GitHub requires:

• A GitHub account

• SSH keys or HTTPS for security

• A defined collaboration process

• Understanding of branches/checkout

GitHub clients are available for Windows, 
Linux, and Mac OS.

Only the user interface and configuration 
change.

On Windows it is highly recommended to 
install an IDE such as VSCode or GitHub + 
Git Extensions.
www.github.com

https://sourceforge.net/projects/gitextensions/

http://www.github.com/
https://sourceforge.net/projects/gitextensions/


Setting up GitHub: Aliases

Common aliases:

git config --global alias.co checkout

git config --global alias.ci commit 

git config --global alias.st status 

git config --global alias.br branch 

git config --global alias.hist "log 

--pretty=format:'%h %ad | %s%d [%an]' 

--graph --date=short“

Edit aliases with:

git config --global -e

Aliases are nicknames you define for 
complex Git instructions.

They are stored locally in the 
.gitconfig file under [alias]

Aliases can be extremely personal 
and some developers will outright 
refuse to share them.

You can define aliases only for a repo, 
with the option --local, or for the 
system, with the option --global.



SSH Keys and HTTPS

GitHub uses SSH to authenticate requests.

Add the public SSH key for each host system you use with your account.

GitHub also supports HTTPS.

Company proxies may make it necessary for you to use HTTPS, particularly on 
Windows.

WARNING!
Only add the public key and never add the private key to GitHub. 
Adding the private key might cause a security risk.



The GitHub flow

Create 
branch

Add 
commits

Open pull 
request

Discuss 
and 

review

Merge 
and 

deploy



The GitHub flow: Roles

Create 
branch

Add 
commits

Open pull 
request

Discuss 
and 

review

Merge 
and 

deploy

Contributors

Community

Maintainer



The GitHub flow: Mechanics

git checkout –b newBranchCreate branch

git commit -sAdd commits

git push –u origin newBranchOpen pull request

Follow contribution guidesDiscuss and review

Test first!Merge and deploy



The GitHub flow: Contributing to the repo

1. Fork the upstream.

2. Clone your fork:

git clone https://github.com/rcaballeromx/istio.io.git

3. Create a new branch for your changes:

git checkout –b newBranch

https://github.com/rcaballeromx/istio.io.git


The GitHub flow: Contributing to the repo

4. Make your changes and add them to the index.
git add –A

5. Commit your changes locally.
git commit –s

6. Push your changes to your remote fork.

git push –u origin newBranch



GitHub and branches

• Branches quickly add overhead 
complexity.

• GitHub keeps track of branches.

• Branches as your worst enemy or your 
best ally.

• Remote branches are branches on a 
remote repo: your fork or the upstream.

• Local branches are branches only 
available on your local Git system.

TIME



GitHub and branches

• You must sync your local Git history with the remote fork.

• To submit a change, never work on the master branch. 

• The collaboration history is kept on GitHub.

• Remote branches help you collaborate easily on multiple features.

• Local branches help you manage your work.



GitHub and branches

• In branches, one commit modifies the code based on the previous one.

• Once pushed to the remote, the commit history is visible to others.

• After pulling the remote and your local repos are identical.

• At first, you don’t need to force push when using GitHub.



GitHub and branches

Branches let you keep track of your work. Remote branches let your team 
contribute to your working.

master = remote master

Feature with two commits

Feature



GitHub and branches

To move from one feature to another, you simply checkout the branch.

Local master
=

Remote master



GitHub and branches

If you are starting a new branch, rebase!



Using Git well

Overhead unit

Commits are Git’s overhead 
unit.

# of commits 

Total impact

Add your total impact to the 
project’s repository:

# of lines added and 
removed  

Effectiveness coefficient

The less commits you create to contribute, the 
cleaner the history becomes and the easier it is 
to manage. 



Key learnings

• Git is a version control system.

• GitHub is a tool for repo management and code review.

• A pull request is a request to merge a branch into master.

• A branch is a sequence of commits containing certain edits.

• Use one branch per feature.

• Rebase your branches against the remote master.

• Aim to increase your impact while reducing the overhead needed.



References

GitHub Documentation

https://guides.github.com/

Pragmatic Version Control Using Git (Pragmatic Starter Kit) Travis Swicegood
The Git Community book

http://book.git-scm.com/
Git 101 
Scott Chacon, Github

http://www.slideshare.net/chacon/git-101-presentation
Git How To

https://githowto.com/
Smacking Git around (Advanced Git)
Scott Chacon

http://www.slideshare.net/railsconf/smacking-git-around-advanced-git-tricks

https://guides.github.com/
http://book.git-scm.com/
http://www.slideshare.net/chacon/git-101-presentation
https://githowto.com/
http://www.slideshare.net/railsconf/smacking-git-around-advanced-git-tricks

